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Abstract
We introduce the general definition of the unconventional geometric phase
independent of the specific physical system and show how a highly squeezed
operator can approximately induce the general unconventional geometric phase,
which goes beyond the original unconventional one by displacement operators
(Zhu and Wang 2003 Phys. Rev. Lett. 91 187902). By means of the squeezed
operator concerning the cavity mode state along a closed path in the phase space,
we discuss specifically how to implement approximately a two-qubit geometric
phase gate in a cavity QED system with two-photon interaction between the
atoms and the cavity mode, assisted by a classical field. Discussions regarding
the implementation time of the gating, the possible decaying sources and the
experimental feasibility are given in detail.

PACS numbers: 03.67.Lx, 03.65.Ta, 42.50.Dv

1. Introduction

It is well known that the construction of a large-scale quantum computer requires the
suppression of decoherence from variable parameter fluctuations. Since quantum gates based
on the dynamical phases are very sensitive to the parameter fluctuations in the operations, the
ideas of decoherence-free subspace [1] and the geometric phase [2–9] have been considered
to be promising for achieving built-in fault-tolerant quantum gates.

Our investigation in this paper is related to geometric quantum gatings (GQGs), which
can be classified to be of two kinds. The conventional geometric quantum gates [2–8],
determined by the global geometric features, offer potential advantages in resistance to
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parameter fluctuations. But generally they require some additional operations for avoiding
the effects from the corresponding dynamical phases, which may bring about additional
errors. Alternatively, we may choose the unconventional GQG [9, 10], which not only
possesses all geometric advantages owned by the conventional geometric gate but also is
independent of the initial state of the system. So implementation of unconventional GQGs
should reach high fidelity. Although the unconventional GQG [9] also creates the geometric
phase with a nonzero dynamic one, it is not necessary to eliminate the dynamic phase because
the dynamic phase is proportional to the geometric phase by a constant independent of the
parameters of the qubit system [9]. We have noted some quantum computing schemes based
on the ideas of conventional GQGs by using super-conducting nanocircuits [4], NMR [6],
semiconductor nanostructure [7] and trapped ions [8]. There has been actually no experiment
achieved for the conventional GQG. In contrast, for the unconventional GQG, besides the
theoretical proposals [9, 10], an experiment has been done with trapped ions [11]. The
unconventional GQGs proposed so far are based on the displacement operator D̂(α) in
the phase space. A natural question arises: whether a highly squeezed operator Ŝ(ε) can do the
same job.

In this paper, we first introduce the general definition of the unconventional geometric
phase, independent of specific physical systems, and then show how a highly squeezed operator
induces approximately the general unconventional GQG, which is different from the original
unconventional one defined in [9]. A two-qubit unconventional GQG will be specifically
investigated in a cavity QED system by means of two-photon interaction between the atoms
and the cavity mode, assisted by a classical field. We find that our gating is related to the
population of the cavity mode, and is thereby sensitive to the cavity decay. Nevertheless, with
the cavity initially prepared in a vacuum state, our scheme is robust to both the cavity decay
and the atomic spontaneous emission.

This paper is organized as follows. In section 2, the definition of the general
unconventional geometric phase caused by the squeezed operator along a closed path in
the phase space is proposed. In section 3, the dynamical evolution of two identical three-level
atoms is studied in detail in the interaction with a quantized cavity mode and a classical field
under the condition of multi-photon interaction. In section 4, the two-qubit unconventional
geometric phase gate is carried out in the cavity system. Finally, some discussions and
conclusion are given in section 5.

2. General unconventional geometric phase by the squeezed operator

The definition of the general geometric phase shift due to displacement along an arbitrary
path in the squeezing parameter phase space is given in this section, as a generalization of the
definition of the geometric phase shift in [12, 13]. The lth-order squeezed operator can be
expressed as follows:

Ŝ(ε) = e
1
2 ε∗â l− 1

2 εâ +l

, (1)

where â and â + are the annihilation and creation operators of the harmonic oscillator (for
example, cavity modes in the case of the cavity QED system), respectively, and ε = r e−2iθ is
the squeezing parameter and may displace in the squeezing parameter phase space. If |dε1|
and |dε2| are approaching zero, the squeezed operators are approximately satisfied with

Ŝ(dε1)̂S(dε2) ≈ Ŝ(dε1 + dε2) e
i
4 Im(dε∗

1 dε2)[â l ,â +l ], (2)
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where the higher order small terms are neglected. For a path consisting of N short straight
sections dεj , the total operator is

Ŝt = Ŝ(dεN) · · · Ŝ(dε1)

≈ Ŝ

 N∑
j=1

dεj

 exp

 i

4
Im

 N∑
j=2

dεj

j−1∑
k=1

dε∗
k

 [â l , â +l]

 . (3)

An arbitrary path γ can be reached in the limit N → ∞. We have

Ŝt ≈ Ŝ

(∫
γ

dε

)
ei�̂l , (4)

where

�̂l ≈ 1

4
Im

(∫
γ

ε∗dε

)
[â l , â +l]. (5)

For a closed path and an initial Fock state, we have

Ŝt ≈ Ŝ(0) ei�̂l = ei�̂l , (6)

�̂l ≈ 1

4
Im

(∮
ε∗dε

)
[â l , â +l], (7)

�l = 〈n|�̂l|n〉 ≈ 1

4

(
(n + l)!

n!
− n!

(n − l)!

)
Im

(∮
ε∗dε

)
, (8)

where the phase operator �l is determined by both the area involved by the loop in the
squeezing parameter phase space and the quantized state of the harmonic oscillator. This is
different from that of [12, 13], in which the geometric phase produced by the displacement
operator is independent of the quantized state of the harmonic oscillator. When l = 1 and
ε = −2α are satisfied, our definition reduces to that of [12, 13]:

D̂t = D̂(0) ei�̂1 = ei�̂1 , �1 = 〈n| �̂1 |n〉 = Im

(∮
α∗dα

)
. (9)

In this paper, for a specific study, we will focus on the case of l = 2, where

Ŝt ≈ Ŝ(0) ei�̂2 = ei�̂2 , �2 = 〈n| �̂2 |n〉 ≈
(

n +
1

2

)
Im

(∮
ε∗dε

)
, (10)

where n is the eigenvalue of the population operator of the harmonic oscillator. We mention
that the definition of the general unconventional geometric phase is independent of any
specific physical systems. The above equations imply that any highly squeezed operators
can approximately induce the unconventional geometric phase shifts.

3. Dynamics of the cavity QED system with multi-photon interaction

We study two identical three-level atoms, each of which has one excited state |i〉 and two
ground states |e〉 and |g〉. The qubits are encoded in the states |e〉 and |g〉, and the state |i〉 is
an auxiliary state. The transition |e〉 → |i〉 is an l-photon process, driven by the cavity mode
with coupling constant g and detuning � = ω0 − ωc, assisted by a classical laser field with
Rabi frequency � and detuning � − δ = ω0 − ωL, with δ � �. In fact, δ = ωL − ωc. As |g〉
is not involved in the interaction, the Hamiltonian [10] can be expressed as (assuming h̄ = 1)

Ĥsl = ω0

∑
j=1,2̂

Sz,j + ωcâ
+â + g

∑
j=1,2

(
â +l Ŝ−

j + â l Ŝ+
j

)
+ �

∑
j=1,2

(
e−iωLt Ŝ+

j + eiωLt Ŝ−
j

)
, (11)
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where ω0, ωc and ωL are the frequencies of the resonant transition between |e〉 and |i〉, the
cavity mode and the classical laser field, respectively. Ŝz,j = 1

2 (|i〉〈i| − |e〉〈e|), Ŝ+
j = |i〉〈e|

and Ŝ−
j = |e〉〈i|, â + and â are the creation and annihilation operators for the cavity mode,

respectively, and l is an integer. In the rotating frame with respect to the cavity frequency ωc,
the Hamiltonian is given by

Ĥil =
∑
j=1,2

[
�Ŝz,j + (gâ +l ei(l−1)ωct + � eiδt )̂S−

j + (gâ l e−i(l−1)ωct + � e−iδt )̂S+
j

]
. (12)

In the case that � � �, g, without exchange of energy between atoms and the fields, the
Hamiltonian of equation (11) can be replaced by an effective Hamiltonian

Ĥiel =
∑
j=1,2

1

�

{[(
(n + l)!

n!
− n!

(n − l)!

)
g2â +l â l + �2 + �gâ l eiδ′t + �gâ +l e−iδ′t

]

× (|ij 〉〈ij | − |ej 〉〈ej |)] +

[
(n + l)!

n!
− n!

(n − l)!

]
g2|ij 〉〈ij |[â l , â +l]

}
+

1

�

[
(n + l)!

n!
− n!

(n − l)!

]
g2 (̂S+

1 Ŝ−
2 + Ŝ−

1 Ŝ+
2

)
[â l , â +l], (13)

where n is the population of the cavity mode and δ′ = ωL − lωc. In this paper, we focus on
the case that two-photon interaction occurs, i.e., l = 2. Therefore, δ′ = ωL − 2ωc. Then the
corresponding effective Hamiltonian may be expressed as

Ĥie2 =
∑
j=1,2

1

�
{[2(2n + 1)g2â +2â 2 + �2 + �gâ 2 eiδ′t + �gâ +2 e−iδ′t ](|ij 〉〈ij | − |ej 〉〈ej |)

+ 2(2n + 1)g2|ij 〉〈ij |[â 2, â +2]} +
2(2n + 1)g2

�

(̂
S+

1 Ŝ−
2 + Ŝ−

1 Ŝ+
2

)
[â 2, â +2].

(14)

We assume that Ĥie2 = Ĥ02 + Ĥ ′
ie2, where

Ĥ02 =
∑
j=1,2

1

�
{[2(2n + 1)g2â +2â 2 + �2](|ij 〉〈ij | − |ej 〉〈ej |) + [2(2n + 1)g2|ij 〉〈ij |[â 2, â +2]},

(15)

Ĥ ′
ie2 =

∑
j=1,2

1

�

{
[�gâ 2 eiδ′t + �gâ +2 e−iδ′t ](|ij 〉〈ij | − |ej 〉〈ej |)

+
2(2n + 1)g2

�

(̂
S+

1 Ŝ−
2 + Ŝ−

1 Ŝ+
2

)
[â 2, â +2]

}
. (16)

Performing the unitary transformation |ψ(t)〉 = e−iH02t |ψ ′(t)〉, from the Schro′′dinger equations
id|ψ(t)〉/dt = Hie2|ψ(t)〉 and id|ψ ′(t)〉/dt = H ′

i2|ψ ′(t)〉, we obtain

Ĥ ′
i2 = eiĤ02t Ĥ ′

ie2 e−iĤ02t

=
∑
j=1,2

�g

�

{[
â 2 exp

(
i

[
δ′ − 8(2n + 1)(n + 1)g2

�

]
t

)

+ â +2 exp

(
−i

[
δ′ − 8(2n + 1)(n + 1)g2

�

]
t

)]
|ij 〉〈ij |
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−
[
â 2 exp

(
i

[
δ′ +

4(2n + 1)2g2

�

]
t

)
+ â +2 exp

(
−i

[
δ′ +

4(2n + 1)2g2

�

]
t

)]
|ej 〉〈ej |}

+
2(2n + 1)g2

�

(̂
S+

1 Ŝ−
2 + Ŝ−

1 Ŝ+
2

)
[â 2, â +2], (17)

in which the only term that contributes an unconventional geometric phase shift to the evolution
of the qubit states |gj 〉 and |ej 〉 is

Ĥ ′
ig2 = −�g

�

[
â 2 exp

(
i

[
δ′ +

4(2n + 1)2g2

�

]
t

)
+ â +2 exp

(
−i

[
δ′ +

4(2n + 1)2g2

�

]
t

)] ∑
j=1,2

|ej 〉〈ej |. (18)

According to the definition of the squeezed operator, during the infinitesimal interval
[t, t + dt], the corresponding evolution of the states of our encoded space will be decided by

Ŝ(dε) = e−iĤ ′
ig2dt , (19)

where

dε = −i
2�g

�
exp

(
−i

[
δ′ +

4(2n + 1)2g2

�

]
t

)
dt. (20)

It is easy to see that the qubit states including a single state |ej 〉 will evolve according to
Ŝ(dε), and the one with two |ej 〉 will evolve according to Ŝ(2dε). Other states will remain
unchanged. Straightforwardly, after an interaction time t ′, the squeezed parameter ε can be
expressed as

ε = −i
2�g

�

∫ t ′

0
exp

(
−i

[
δ′ +

4(2n + 1)2g2

�

]
t

)
dt

= 2�g

�δ′ + 4(2n + 1)2g2

[
exp

(
−i

[
δ′ +

4(2n + 1)2g2

�

]
t ′
)

− 1

]
, (21)

and the geometric phase shifts �2 = 〈n|�̂2|n〉 and �′
2 = 〈n|�̂′

2|n〉, regarding
|ej 〉|gk〉(|gj 〉|ek〉) and |ej 〉|ek〉(j 
= k), respectively, are

�2 = 〈n|�̂2|n〉 =
(

n +
1

2

)
Im

(∫
γ

ε′∗dε′
)

= (2n + 1)(�g)2

2�[�δ′ + 4(2n + 1)2g2]

×
[
t ′ − 1

δ′ + 4(2n+1)2g2

�

sin

(
δ′ +

4(2n + 1)2g2

�

)
t ′
]

, (22)

and

�′
2 =

(
n +

1

2

)
Im

(∫
γ

2ε′∗d2ε′
)

= 4�2. (23)

4. Unconventional geometric phase gates in two-photon interaction

We consider that the cavity is initially in the Fock state |0〉 or|1〉, and we pay our attention on
the second-order squeezing process. When the squeezed parameter dε2 moves along a closed
path, returning to the original point in the phase space, a global geometric phase conditional
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upon the electronic states and the cavity mode states will appear. From equation (21), the
condition of the system along the closed path is∣∣∣∣δ′ +

4(2n + 1)2g2

�

∣∣∣∣ t ′ = 2kπ, (24)

where k is an integer, determined by specific parameters in the system. Therefore, we can give
the evolution expression of the system, governed by the Hamiltonian Ĥ02,

|g1〉|g2〉|n〉 → |g1〉|g2〉|n〉 → |g1〉|g2〉|n〉,
|g1〉|e2〉|n〉 → ei�2t ′/� ei�2S(ε2)|g1〉|e2〉|n〉 → ei(�2+�2t ′/�)|g1〉|e2〉|n〉,

(25)
|e1〉|g2〉|n〉 → ei�2t ′/� ei�2S(ε2)|e1〉|g2〉|n〉 → ei(�2+�2t ′/�)|e1〉|g2〉|n〉,
|e1〉|e2〉|n〉 → ei2�2t ′/� ei�′

2S(2ε2)|e1〉|e2〉|n〉 → ei(4�2+2�2t ′/�)|e1〉|e2〉|n〉,
where

�2 = (2n + 1)(�g)2

2�[�δ′ + 4(2n + 1)2g2]
t ′′, �′

2 = 4�2 (n = 0, 1). (26)

After the single qubit operation is performed |ej 〉 → exp
(−i

(
�2 + �2

�
t ′
))|ej 〉, the evolution

turns to

|g1〉|g2〉|n〉 → |g1〉|g2〉|n〉, |g1〉|e2〉|n〉 → |g1〉|e2〉|n〉,
(27)

|e1〉|g2〉|n〉 → |e1〉|g2〉|n〉, |e1〉|e2〉|n〉 → ei2�2 |e1〉|e2〉|n〉.
It is clear that this is an unconventional geometric 2�2-phase gate based on the squeezed

operator and the cavity QED system. If |2�2| = π is satisfied, we can acquire a π -phase gate.
Therefore, this unconventional geometric phase gate can be implemented in the cavity QED
system from an initial Fock state |n〉.

5. Discussion and conclusion

Although the excited state |i〉 is not actually populated throughout the scheme, which
suppresses the spontaneous emission, the phase shift including the population of the cavity
mode restricts our scheme to be applied in general situation. To avoid the cavity decay to
the best, we have to prepare the cavity to be initially in a vacuum state. Under the condition
(�g)/(�δ′ + 4g2) � 1, i.e., S(ε) � 1, the detrimental effect from the cavity decay on the
gating is negligible. If we assume ω0 = 25g, ωL = 16g, ωc = 15g and � = g, then we have
� = 10g and δ′ = −14g. In the case of n = 0, the required time to implement our gate is
t ′′ = �|�δ′ + 4g2|π/(�g)2 = 1360πg−1. Following the idea in [10], we take the decay rate
of the cavity to be γ = g/27 [14, 15]. It is easy to find that the gate error due to the cavity
decay is about 3.42%.

We now turn to discuss the influence of the approximation in equation (2) on the geometric
phase shift. When |dεi |(i = 1, 2) → 0, we can obtain the geometric phase shift error

ηe = 1
3 [dε1 dε∗

1 + dε2 dε∗
2 + dε1 dε∗

2 + dε∗
1 dε2]. (28)

Setting |dε1| = |dε2| � 0.1(or0.01), we have ηe = 1.33% (or1.33 × 10−4). Therefore, if the
squeezed parameter dεi(i = 1, . . . , N) � 10−4 of each step in equation (3) can be controlled,
with the assumption that N = 103, we estimate that its resulting additive geometric phase
shift error is ηeadd = N2ηe(dεi ) � 1.33 × 10−2. In fact, the |dε| → 0 in equation (20) can
be effectively controlled by means of adjusting parameters �,�, g and dt. Therefore, in this
case, the gating time will be correspondingly a little prolonged.
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The scheme can be directly extended to the cavity field initially in a many-photon
state. Although more photons are involved in the interaction, the more difficult is the
experimental realization. Nevertheless, in the case that the cavity state is initially in
an arbitrary Fock |n〉(n 
= 0, 1), our scheme works by only changing the single qubit
rotation |ej 〉 → exp

(−i
(
�2 + �2

�
t ′
))|ej 〉 to |ej 〉 → exp

(−i
(
�2 + �′2

�
t ′
))|ej 〉, where �′2 =

2n(n − 1)(2n + 1)g2/� + �2. Moreover, our scheme can be transcribed to an ion-trap system
since the mathematics, based on the Jaynes–Cummings model, for cavity-QED and ion trap
are somewhat analogous, although the physics behind the mathematics is different. In ion-trap
systems, we need the detuned lasers to radiate the ions. Following the idea in [11], we can also
achieve the unconventional GQG induced by the squeezed operator in an ion trap by properly
choosing multi-phonon detunings.

Actually, after direct but complex algebra, the expressions of the squeezed parameter εl,

the corresponding geometric phase shifts �l and �′
l , induced by the lth squeezed operator,

can be shown as follows, respectively,

εl = −i
2�g

�

∫ t ′

0
exp

−i

δ′ +

(
(n+l)!

n! − n!
(n−l)!

)2
g2

�

 t

 dt

= 2�g

�δ′ + 4(2n + 1)2g2

exp

−i

δ′ +

(
(n+l)!

n! − n!
(n−l)!

)2
g2

�

 t ′

− 1

 , (29)

�l = 1

4

(
(n + l)!

n!
− n!

(n − l)!

)
Im

(∫
γ

ε′∗
l

)
dε′

l

)

=
(

(n+l)!
n! − n!

(n−l)!

)
(�g)2

4�
[
�δ +

(
(n+l)!

n! − n!
(n−l)!

)2
g2
]

×

t ′ − 1

δ′ +

(
(n+l)!

n! − n!
(n−l)!

)2
g2

�

sin

δ +

(
(n+l)!

n! − n!
(n−l)!

)2
g2

�

 t ′

 (30)

and

�′
l = 1

4

(
(n + l)!

n!
− n!

(n − l)!

)
Im

[∫
γ

(2ε′∗
l )d(2ε′

l )

]
= 4�l. (31)

Consider that the cavity is initially in Fock states |0〉, |1〉, . . . , |n − 1〉, respectively.
Through the same process as in section 4, and by means of the single qubit operation
|ej 〉 → exp

(−i
(
�l + �2

�
t ′
))|ej 〉, the corresponding unconventional geometric 2�l-phase

gates can also be obtained.
In summary, we have specifically studied the approximate implementation of a two-

qubit unconventional GQG in the context of a cavity QED system. We have also shown the
possibility of having GQGs induced by lth-order squeezed operators. Our proposed gating
is insensitive to the atomic spontaneous emission due to large detuning, and in the case of a
vacuum cavity mode, the error due to the cavity decay can be avoided.
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